
1

DYNAMINER: Leveraging Offline Infection
Analytics for On-the-Wire Malware Detection

Birhanu Eshete and V.N. Venkatakrishnan
University of Illinois at Chicago
{eshete5, venkat}@uic.edu

Abstract—Web-borne malware continues to be a major threat
on the Web. At the core of malware infection are for-crime
toolkits that exploit vulnerabilities in browsers and their exten-
sions. When a victim host gets infected, the infection dynamics is
often buried in benign traffic, which makes the task of inferring
malicious behavior a non-trivial exercise.

In this paper, we leverage web conversation graph analytics to
tap into the rich dynamics of the interaction between a victim and
malicious host(s) without the need for analyzing exploit payload.
Based on insights derived from infection graph analytics, we
formulate the malware detection challenge as a graph-analytics
based learning problem. The key insight of our approach is
the payload-agnostic abstraction and comprehensive analytics of
malware infection dynamics pre-, during-, and post- infection.
Our technique leverages 3 years of infection intelligence spanning
9 popular exploit kit families.

Our approach is implemented in a tool called DYNAMINER and
evaluated on infection and benign HTTP traffic. DYNAMINER
achieves a 97.3% true positive rate with false positive rate of
1.5%. Our forensic and live case studies suggest the effectiveness
of comprehensive graph abstraction malware infection. In some
instances, DYNAMINER detected unknown malware 11 days
earlier than existing AV engines.

Index Terms— malware detection, graph analytics, machine
learning.

I. INTRODUCTION

Malware infection via drive-by-downloads has become a
day-to-day encounter in the current state of the Web. As
cybercriminals step up their evasion tactics on content-based
defense, the research community has responded with behavioral
techniques (e.g., [5, 13, 19]) for malware analysis and detection.
To this end, prior work explored approaches centered around the
malware download phenomenon. In particular, on the analysis
of binary reputation [21], exploit behavior [7, 11], redirection
graphs [14, 25], malware download paths [16, 28], download
graphs [9, 12], and botnet C&C dialogue [8, 15].

While these dimensions of malware defense are effective
when considered in isolation, practice shows that a typical
malware infection often exhibits behavioral dynamics which
encapsulates a set of related interactions among actors in
HTTP conversation. The interactions involve (i) pre-download
dynamics —through a series of redirections, (ii) payload
download dynamics —where malware payload gets downloaded
to a victim system and, (iii) post-download dynamics —which
involves connecting back to a C&C server of a cybercriminal.
At the same time, multiple actors participate in a typical
malware infection. These actors include compromised sites,
traffic distribution services (TDSs), landing page servers, and

exploit servers. Given this nature of malware infection dynamics
and these crucial actors, we argue that a malware infection
detection scheme that takes advantage of the interaction
relationships between the various actors is desirable to (i)
synthesize a comprehensive understanding of malware infection
behavior, and (ii) develop more robust defense grounded to
the inherent facets of malware infection.

In this paper, we present a novel system called DYNAMINER
that leverages payload-agnostic web conversation graph (WCG)
analytics. DYNAMINER taps into the rich dynamics of the
interaction between a victim and malicious hosts to learn
insights for building an effective malware defense. The key
observation in DYNAMINER is the payload-agnostic1 and
comprehensive2 abstraction and analysis of malware infection
dynamics. Our system reasons over a combination of payload
download dynamics, pre-download redirections, and post-
download dynamics of a web conversation, without the need
to analyze exploit payload content. In a nutshell, DYNAMINER
leverages offline analysis of real-world malware infection to
perform on-the-wire detection.

Motivated by the reality that the majority of malware use
the Web as an entry point, DYNAMINER focuses on malware
infection over HTTP. To this end, given a stream of HTTP
transactions, DYNAMINER first abstracts the transactions into
a WCG that captures who is related to whom (e.g., hosts, IP
addresses), what relates the participants of the conversation
(e.g., download, redirection), and how the conversation plays
out temporally (e.g., delay between redirections). To annotate
the WCG with artifacts of pre-download redirection, payload
download, and post-download dynamics, DYNAMINER em-
ploys a number of heuristics (Section III-B). On the annotated
WCG, DYNAMINER then performs graph analytics to infer
payload-agnostic properties of the graph (Section IV). Finally,
it determines whether the WCG is a malware infection or
benign (Section V). DYNAMINER relies on 37 payload-agnostic
features, of which 27 are novel features. We note that among
the novel features, 15 are in the top-20 highly distinguishing
features for infection detection (Section VI-A).

In leveraging offline analysis of malware infection for on-
the-wire detection, the major challenge is the inevitable benign
background traffic that can potentially cause noise for statistical
learning. We tackle this challenge via a careful choice of a
learning algorithm that suits the variable nature of HTTP traffic

1Payload agnostic: does not require analysis of exploit payload (e.g., an
executable binary) to perform detection. Hence, our malware detector will be
resilient against morphed malware that evades content-based detection.

2Comprehensive: capturing pre-infection fingerprinting and redirection,
payload download, and post-infection C&C call-back.

2

data. To this end, we employ the Ensemble Random Forest
(ERF) [1] that is proved to perform reliably in the presence of
noisy data. The robustness of ERF comes from the fact that sub-
structures learned in a form of trees during training can capture
distinct dynamics pertinent to redirection, download, and post-
download sub-structures in the WCGs. In addition, during
real-time detection, our system also weeds out obvious sources
of noise (e.g., downloads from trusted software vendors).

On a ground truth data which spans 3 years of infection
intelligence, the ERF classifier in DYNAMINER achieves an
overall accuracy of 97.3% with a false positive rate of 1.5%. On
a validation dataset disjoint with the ground truth, our classifier
outperforms VirusTotal detectors by 11.5%. Furthermore, on
a forensic and a live case study, our classifier outperforms
VirusTotal detectors — suggesting the practical viability of
DYNAMINER for offline and real-time malware detection. We
also confirmed through a forensic case study, DYNAMINER
detected an unknown malware 11 days ahead of VirusTotal.

This paper makes the following contributions:

• an empirical analysis that suggests a set of novel insights
on malware pertinent to payload-agnostic analytics and
detection,

• a payload-agnostic malware infection analysis technique
based on analytics that taps into the rich dynamics of HTTP
conversation graphs.

• a system that can be deployed at the network level for
real-time malware detection.

The remainder of this paper is organized as follows. In
Section II, we present a motivational study of malware infection.
We introduce the formulation of our approach in Section III. In
Section IV, we discuss the payload-agnostic features. Training
and detection are discussed in Section V. We then present the
results of our evaluation in Section VI. We discuss limitations
and related work in Sections VII and VIII respectively. Section
IX concludes the paper.

II. BACKGROUND: INFECTION DYNAMICS STUDY

To motivate our approach, in this section, we report insights
from our analysis of real malware infection episodes captured
on an enterprise network over a period of 3 years.

Analysis context and sanitization. To extract interesting
artifacts from our study, we employ deep packet inspection to
“connect the dots” in HTTP transactions of malware infection.
Given our goal of examining malware infections from HTTP
traffic, the traces we analyze may carry content not relevant to
actual infection (e.g., binaries downloaded as part of system
update). We therefore exclude non-malicious HTTP transactions
and associated payloads using common-sense heuristics (e.g.,
binaries from known software vendors). As a second layer
of sanity check, we pass all malicious payloads through
VirusTotal [4] and verify their maliciousness via a conservative
ensemble of detection systems.

Challenges in connecting the dots. Given an HTTP traffic
capture, it might seem obvious to reconstruct the infection
scenario. Unfortunately, it is more than a just mere stitching of
HTTP transactions. With regards to recovering pre-download
dynamics (e.g., redirections), one has to carefully comb
through the HTTP traffic to pinpoint redirection footprints

via Referrer headers on the client, Location headers on the
malicious host, custom redirections such as JavaScript and
META redirects. The most challenging situation is miscreants
often use obfuscation of client-side code to conceal redirection
chains. We therefore infer redirection and post-infection insights
by deciphering obfuscated infection traffic to recover hidden
redirection dynamics.

II-A. Ground Truth Data and Collection Methodology

Table I shows the ground truth dataset for this paper. Next,
we describe the dataset and its collection context.

Infection Ground Truth. Our experimental insights in this
paper are based on our analysis of 770 distinct PCAP traces
of exploit kit malware infections. The dataset spans 3 years
(06/2013 - 07/2016), covers 9 popular families of exploit
kits, and involves 6 predominant exploit payloads —which,
according to recent estimates [23], account for 2/3 of web-
borne malware infection. Each trace represents a confirmed
infection whereby a victim host interacts with an exploit kit site.
Given the 3 years duration it spans, the presence of the most
prevalent exploit kits, and the abundance of well-known exploit
types, we believe that our dataset is representative of a realistic
snapshot of the recent threat landscape with regards to web-
based malware infections. All the samples we use for ground
truth are obtained from malware-traffic-analysis.net.

Benign Ground Truth. To build a labelled ground truth of
infection-free web surfing, we used multiple browsing sessions
to capture 980 unique PCAP traces during 05/2015 - 05/2016.
In all the browsing sessions, we keep multiple tabs open in
the browser. As web search accounts for significant percentage
of online activities, we collect traces of typical searching on
the Google and Bing search engines. To simulate dynamics
close to malware infection, we also click on links of a few
of top search results. Visiting social networking sites, such as
Facebook and Twitter, is also included in our data collection
with common user operations such as clicking on links shared
by friends and opening links in tweets. Another scenario we
monitored is the use of web-based email services (e.g., Gmail,
Yahoo! Mail) which includes the dynamics of downloading
attachments of different file formats (e.g., PDF, executables, and
MS office documents). To account for email-based exposure,
we also captured dynamics on clicking links embedded in
email messages. To simulate watching videos and clicking on
advertisement links, we captured various scenarios of visits
to youtube.com. Lastly, we also include traces from visits
to randomly selected sites from Alexa Top 1 million sites.
Given the scenarios we used for trace collection, our dataset
is realistic enough to stress-test the discriminating power of
features we discuss later in Section IV.

Next, we highlight empirical insights on malware infection
focusing on exposure, graph properties, and HTTP header
properties.

II-B. Insights on Exposure

In a typical malware infection, unsuspecting victims are lured
to a seemingly harmless site via a range of exposures. Popular
enticement methods include: links embedded in email messages,
search results pointing to remote URLs, URLs shared by friends

3

Trace
Family

No. of
PCAPs

No. of Hosts No. of Redirects Unique Payload Counts
Min. Max Avg. Min. Max Avg. *.pdf *.exe *.jar *.swf *.crypt *.js

Benign 980 2 34 3 0 2 0 60 30 3 0 0 138
Angler 253 2 74 6 0 18 1 0 80 133 0 64 1163
RIG 62 2 17 4 0 3 1 0 35 74 13 0 240
Nuclear 132 2 213 8 0 18 1 8 730 146 13 11 935
Magnitude 43 2 231 20 0 12 2 0 862 22 0 2 330
SweetOrange 33 2 90 8 0 6 1 0 310 22 0 0 227
FlashPack 29 2 15 5 0 8 2 0 556 35 0 0 159
Neutrino 40 2 30 6 0 14 2 0 45 31 5 6 217
Goon 19 2 90 9 0 30 2 0 78 15 10 0 71
Fiesta 89 2 182 7 0 3 1 21 226 72 63 0 414
Other Kits 70 2 68 4 0 5 1 1 420 13 4 0 271

TABLE I: Ground truth dataset. “No. of PCAPs” is the number of PCAP files which represent a single infection episode. The minimum for
“No. of Hosts” is always 2 since the smallest conversation involves a client and one remote host. Columns “*.pdf”, “*.exe”, “*.jar”, “*.swf”,
“*.crypt”, and “*.js” refer to the count (per family) of payloads of the indicated file extensions. Since ransomware payloads come in more
than 45 different file extensions, we used “*.crypt” to collectively refer to crypto-locker file types in our ground truth dataset. Note also that
“*.js” shows the count of distinct JavaScript files (local and remote) all of which may not necessarily be malicious.

Bing	Search,	180,	
24.59%

Google	Search,	
271,	37.02%

Facebook,	2,	
0.27%

Empty,	130,	
17.76%

Redacted,	55,	
7.51%

Compromised	
Site,	94,	12.84%

CHART	TITLE

Fig. 1: Overall distribution of enticement strategies (Legend
shows category, count, and percentage respectively).

via social networking sites, ad banners with links to other URLs,
and legitimate sites with links to other (possibly)malicious sites.
A common aspect of all these enticement strategies is that the
victim is tricked to visit a certain URL.

Knowing how the victim ended up visiting a malware site
is crucial in establishing a case as to whether a malware
infection is about to unfold. In this regard, we examine our
ground truth dataset for clues about enticement strategies used
in each infection. In particular, we infer from the infection
traffic whether the victim was (i) visiting a search engine site
(ii) visiting a social networking site and (iii) checking out a
seemingly legitimate site.

Search engines drive infection exposure. Figure 1 shows
the overall distribution of enticement strategies used in exploit
kits. Search engines take the lion’s share (62%) of the
enticement strategies —Google with (37%) followed by Bing
(with 25%). Given the market share of these two search
engines, the distribution in Figure 1 is not surprising. A
noteworthy observation, however, is that despite the popularity
of social networking sites such as Facebook, less than 1% of
the enticements originated from such sites. Interestingly, our
findings are inline with a recent study [16] that found out search
engines as the predominant origins of malware downloads. The
same study also confirms our observation on the infrequent

0
20
40
60
80

100
120
140
160
180
200
220
240
260

Chart	Title

Bing	Search Google	Search

Facebook Empty

Redacted Compromised	Site

Fig. 2: Infection origin distributions for 9 exploit kits.

use of social networking sites to initiate malware infection.
In about 17.76% of the traces, we found the referrer fields

to be empty — which we believe is due to intentional removal
of referrer header values to conceal origin. The 7.51% traces
for which the referrers have been redacted are sites that could
have otherwise violated user privacy on victim hosts.

Weaponization of compromised sites. In 12.84% of the
infection traces, enticements happened via compromised sites.
This evidence shows the steady rise in the use of vulnerable
sites for infection by cybercriminals. Recent studies (e.g.,
[6]) have also confirmed the rise of exploit kit infection via
compromised sites. As can be seen from Figure 1, about 94
of the infections are initiated by visiting compromised sites.
In quest for specifics, we matched the URI patterns of the 94
sites with URI patterns of default installations for commonly
used CMSs (in particular, WordPress, Joomla, and Drupal).
We found out that 56/94 infections have enticement URIs
that match typical installations of WordPress sites. We also
examined the longitudinal distribution of these sites in our
infection ground truth dataset. To this end, we confirmed that
while 15 of the 56 WordPress sites are scattered over a 2.5
years period (06/2013 - 01/2016), 41 out of the 56 appeared

4

-10
0
10
20
30
40
50
60
70
80
90

100

O
rd
er

G
ra
ph

_S
iz
e

D
eg
re
e

Av
g_
In
_D

eg
re
e

Av
g_
O
ut
_D

eg
re
e

Re
ci
pr
oc
at
ed
_E
dg
es

D
en
si
ty

Vo
lu
m
e

Av
g_
D
eg
re
e_
Ce
nt
ra
lit
y

Av
g_
Cl
os
en
es
s_
Ce
nt
ra
lit
y

Av
g_
Be
tw
ee
nn

es
s_
Ce
nt
ra
lit
y

Av
g_
Lo
ad
_C
en
tr
al
ity

Av
g_
N
od

e_
Co

nn
ec
tiv
iti
y

Av
g_
Cl
us
te
rin

g_
Co

ef

Av
g_
N
ei
gh
bo

r_
D
eg
re
e

Av
g_
D
eg
re
e_
Co

nn
te
ct
iv
ity

Av
g_
K_
N
ea
re
st
_N

ei
gh
bo

rs

Av
g_
Pa
ge
ra
nk

Chart	Title

benign infection

Fig. 3: Average measures for various graph properties.

within 90 days (01/2016 - 04/2016) —showing that such sites
are increasingly utilized by cybercriminals.

Per-family distribution. Figure 2 shows the per-family
distribution of enticement in exploit kit malware infection.
Search engines and compromised sites consistently rank as the
top enticement strategies used by the currently popular exploit
kits. This similarity is attributed to the fact that exploit kit
authors often employ similar black-hat SEO schemes or they
could compromise similar set of vulnerable sites.

II-C. Insights on Graph Properties

Malware infection involves actors (i.e., various hosts) and
relations (e.g., request, response, download, redirect) that
link actors. Such a structure is essentially a (directed) graph.
Inspired by this inherent graph structure, we studied graph
properties of malware infection. A snapshot of our analysis is
shown in Figure 3 which shows the average measurement of
different graph properties. While the detailed insights from our
graph abstraction are presented in Sections III and IV, here
we briefly summarize the graph properties we examined in our
dataset.

Basic Graph Properties. On average, infection graphs have
higher number of nodes and edges. In addition, infection graphs
tend to have higher diameter, degree, and volume.

Centrality. Except for load centrality, on average infection
graphs have lower degree-centrality, closeness-centrality, and
betweenness-centrality.

Connectedness. Due to high frequency of request-response
and redirection relations, infection graphs on aggregate tend to
have higher measures for degree-connectivity, neighbors, and
page-rank.

II-D. Insights on HTTP Header Properties

Infections standout. While HTTP headers are interesting for
pattern matching, in this work, we examine a more specialized
set of header elements relevant to payload-agnostic dynamics
analysis. Figure 4 captures the summary of our analysis on the
infection dataset. Overall, we notice a contrasting statistical

0

5

10

15

20

25
benign infection

Fig. 4: Average counts for HTTP header elements.

distribution of infection traces in comparison to benign traces.
In particular, the average number of GET and POST requests,
redirection chains, and HTTP 40X response codes is visibly
higher (in some cases more than double) than the benign
counterparts. A typical infection has at least 2 chains of
redirection, while a typical infection-free trace has none. In
some infection traces, we noticed exceptionally long redirection
chains in some families of exploit kit infections (e.g., as long
as 30 in the Goon exploit kit). Exploit kits such as Angler,
Nuclear, and Neutrino are also known for their elaborate chains
of redirections (see the “No. of Redirects” column in Table I).

Post-infection calling back attempts. In 708 of the 770
infection traces, we confirmed at least one attempt of “calling
back home”. In all of the cases, our analysis reveals that the
hosts (IP addresses) to which post-download requests were
initiated from the victim host have never been seen prior to or
during the download dynamics. We found this characteristic to
confirm our intuition behind analyzing the whole-spectrum of
malware infection to engineer effective features for detection.

III. WEB CONVERSATION GRAPH ANALYTICS

We now present our web conversation analytics focusing on
graph abstraction, construction, and annotations.

Overview. Figure 5 shows a high-level overview of DY-
NAMINER with two major stages, an Offline Web Conversation
Analytics (Stage 1) and an On-the-Wire Malware Detection
(Stage 2). In stage 1, DYNAMINER analyzes web conversation
traces (PCAPs) to construct a WCG and performs analytics
on it. The result of the analytics is payload-agnostic features
that are used to train a classifier. In stage 2, DYNAMINER
continually receives real-time HTTP request-response transac-
tions and infers clue(s) of infection. Whenever it finds an
infection clue (e.g., a redirection chain above a threshold
followed by a download of a likely-malicious payload type),
it builds a potential infection WCG around the clue(s). The
constructed WCG is then passed to a feature extraction engine
to extract the WCG properties to be evaluated by the classifier.
Finally, DYNAMINER gives a verdict (infection or benign)
on the WCG. If DYNAMINER deems a WCG infectious, the
corresponding session is terminated. For each WCG deemed
benign, DYNAMINER keeps monitoring it as it grows, until
the corresponding web session is terminated (usually by the
user) or the WCG stops to grow.

5

Web Conversation
Graph Construction

Graph
Analytics

Classifier
Training

Infection Clue
Inference

Potential Infection
Graph Construction Detection

PCAPs Graph

features Alert
Real-time

HTTP traffic

Clues Graph
Analytics

Graph

Classifier

Stage 1: Offline Web Conversation Analytics

Stage 2: On-the-Wire Malware Detection

[x1, x2, x3, ..., xn]

features
[x1, x2, x3, ..., xn]

Fig. 5: High-level overview of DYNAMINER.

III-A. Graph Abstraction

We now describe how we build WCGs as they make the
foundation of our analytics, learning, and detection. A WCG
is a directed graph that captures the interaction between a host
and one or more remote hosts. A node in the WCG represents
a unique host, which can be a victim host, a malicious host, or
a redirect intermediary host. A victim host is the one to which
malware payload is downloaded (and executed). Alternatively,
a victim host is also characterized by post-infection exfiltration
to the attacker’s server. A node is designated malicious if there
is at least one download of malware payload from it to a
victim host. An intermediary redirect host is a host that does
nothing more than chaining hosts beginning from the victim
host. An edge from host Hi to host Hj could mean (i) Hi

sends a request (e.g., GET, POST) to Hj (ii) victim Hj receives
response from host Hi (which could be payload download) or
(iii) Hi is redirected to Hj .

Let us formally define our abstraction for the WCG. Suppose
that H denotes the set of all hosts in a WCG dataset, Rq denotes
the set of all requests, and Rs denotes the set of all responses,
and Rr denotes the set of all redirects. Then the WCG Gi for
a client Hi is defined as Gi = (Φi, Ψi, Σi, α, β) where:

• Φi ⊆ Rqi × Rqi denotes a set of directed edges that
correspond to requests initiated by Hi.

• Ψi ⊆ Rsi × Rsi denotes a set of directed edges that
correspond to responses received by Hi.

• Σi ⊆ Rri × Rri denotes a set of directed edges that
correspond to redirection relations in which Hi participates.

• α denotes a set of attributes about nodes and may include
node type, IP address, and port number.

• β denotes a set of attributes about edges between nodes such
as protocol, payload details (e.g., type, size), timestamp,
and user-agent.

III-B. Graph Construction

Given an HTTP transaction stream, to construct a WCG we
first extract unique hosts to populate the nodes. Next, we group
the HTTP transactions into conversations between pairs of hosts.
For each conversation pair, we identify one or more request,
response, or redirection edges. We then annotate the nodes
and the edges with relevant conversation attributes. Finally, we
leverage the source-destination information to connect nodes

via edges. The construction of the WCG begins by adding
what we refer to as origin node. An origin node is a special
node that indicates the enticement source. When the origin of
a web conversation is known, the origin node takes the name
of the referrer. Otherwise, it is marked “empty”.

Real infection example. Figure 6 shows a simplified WCG
we constructed from an infection trace of the Angler exploit kit.
The “bing.com” node is the referrer node which is the origin
that initiated to the malware site. Counting in the origin node,
the WCG has 8 nodes and 31 edges (not all are shown in the
graph). In the pre-download dynamics (blue dotted region), the
victim is redirected (via a search engine) to a compromised
site A which then leads it to B (an exploit kit landing page).
An iframe redirection in B then leads the victim to the exploit
kit server C that serves Flash exploits. The download dynamics
(red dotted oval) ends with a download of a flash file from host
C. Finally, the post-download dynamics (purple dotted oval)
shows the malware contacting, via POST requests, remote hosts
D, E, and F. These three hosts point to 3 unique IP addresses
that serve the infamous CryptoWall ransomware. For the sake of
brevity, we have not shown all the attributes of nodes and edges
on the WCG in Figure 6. However, our approach annotates
nodes and edges of a WCG with attributes that we use for
computing features. In the following, we discuss annotation of
nodes, edges, and the WCG as a whole.

III-C. Graph Annotations

Node-Level: The nodes in the WCG are annotated with the
following attributes:

• Basic attributes: These include hostname and IP address.
• URIs per host: For each host, we count the unique number

of URIs that have the hostname (IP address) of a host.
• Payload summary: This captures the count of different

payload types that originate from or received by a node.
The payload types include: known exploit types (e.g.,
*.jar, *.exe, *.pdf, *.xap, *.swf) and commonly exchanged
payloads (e.g., images, HTML, JavaScript code, compressed
files, text files). The summary also includes ransomware
exploit payloads. Since ransomware comes with variable file
extensions, we match file extensions in the web conversation
against 45 distinct file extensions that we compiled from
industry reports on ransomware [10].

6

bing.com victim[1]:origin

A

[2]: req('GET',1, 'bing.com')

B

[4]: req('GET', 5, 'A')

C

[6]: req('GET',132, 'A')

[8]: req('GET',114, 'C')

[10]: req('GET',92, 'none')

D

[12]: req('POST',28, 'None')

E

[14]: req('POST',28, 'None')

F

[16]: req('POST', 28, 'None')

[18]: req('POST', 26, 'None')

[20]: req('POST', 26, 'None')

[3]: res('200 OK', 'HTML', '110.9KB', '19:30:23')

[5]: res('200 OK', 'HTML', '58B', '19:30:31')

[11]: res('200 OK', 'BINARY', '414KB', '19:30:56')

[7]: res('200 OK', 'HTML', '93KB', '19:30:40')

[9]: res('200 OK', 'SWF', '44.5KB', '19:30:44')

[13]: res('200 OK', 'TXT', '5B', '19:31:12')

[15]: res('404 ', 'HTML', '35.9KB', '19:31:33')

[17]: res('200 OK', 'TXT', '14B', '19:31:44')

[19]: res('200 OK', 'HTML', '120.5KB', '19:32:18')

[21]: res('200 OK', 'TXT', '6B', '19:32:59')

Pre-Download
Dynamics

Download
Dynamics

Post-Download
Dynamics

A: http://reneesdestinyproductions.com
B: http://beladonna.ga
C: http://sviteresdisneylite.syleraccountingservice.com
D: http://baixaroucomprar.com
E: http://acadia-meble.pl
F: http://balustradydrewniane.pl

Fig. 6: Example WCG (Angler exploit kit captured on 12/21/2015). For “req” edges, the attributes shown are respectively: HTTP method,
URI length, and referrer. We excluded the exact URI in requests to maximize the readability of the graph. For “res” edges, the attributes are
respectively: HTTP response code, payload type, payload size in bytes, and timestamp. The victim’s user agent is MSIE8.0 on Windows 7.

Edge-Level: The edges in the WCGs are annotated with the
following properties:

• Timestamp: the time at which the event represented by the
edge happens.

• Conversation stage: this property is assigned 0 for an
edge that appears in pre-download stage, 1 for an edge in
download stage, and 2 for edges in post-download stage. To
determine the stage of an edge, we take a request-response
pair and reason over a combination of: timestamp, HTTP
method, response codes. For instance, if a request uses GET
as a method, no known exploit payload is downloaded to
a victim client prior to that, and the response code is 30x,
then we assign the request-response pair to a pre-download
stage. All the remaining request-response pairs are assigned
to download stage after correlating their timestamp for
inconsistencies. Note that the last 30x response code is the
end of the pre-download stage and the beginning of the
payload download stage. With the same token, the last 20x
response whose content type is one of the known exploit
payloads is considered the end of the payload download
stage. For request-response pairs that use POST as a method
to contact nodes from which no known exploit payload is
downloaded, and the response code is either 200 or 40x,
we assign them to a post-download stage.

• HTTP method: This captures which HTTP method is used
in a request edge.

• URI length: The URI length of a request edge.
• Response code: The HTTP response code of a response

edge.
• Payload file type: The payload type of a response edge.
• Payload size: The payload size in bytes of a response edge.

Graph-Level: In addition to node and edge attributes, we
also compute aggregate properties that we use as foundations
of features for classifying infectious WCGs. The following are
annotations we add to a WCG.

• Do not track: It is assigned 1 if the “DNT” property is
enabled. Otherwise, it is assigned 0.

• X-Flash version: If version of “X-Flash” is set, we capture
its value. Otherwise, it is assigned 0.

• Average payload counts: The graph-level count of different
payload types.

• Average payload sizes: The graph-level measure of payload
sizes in bytes.

• Total methods for requests: The total count of GET, POST,
and other request methods in the graph.

• Total referrers: The graph-level total count of requests for

7

which referrer is set.
• Cross-domain redirection: The count of redirections that

happen between two different origins.
• Redirection length: The number of unique hops involved

in a redirection chain.
• TLD diversity: The number of unique top-level domains

involved in redirection.
• Graph dynamics: The graph-level properties including

order, size, degree, density, volume, different measures
of centrality and connectivity, neighborhood dynamics, and
clustering coefficient.

• Conversation duration: The total duration in seconds of
the conversation in the graph.

• Average inter-transaction time: this captures the average
inter-arrival time of HTTP transactions in the graph.

• Average delay between successive redirects: this captures an
estimate of the average time spent between two successive
redirections. This property is useful in identifying infectious
redirections from benign redirections since infections tend
to have shorter delays between consecutive redirects.

III-D. Notes on Heuristics and Global Properties

Heuristics. In order to comprehensively capture behavior
and relations in WCGs, we employ a number of heuristics.
We infer pre-download redirections primarily from referrer and
redirection header values of the HTTP transactions. However,
redirection evidence is often embedded in obfuscated HTML
or Javascript. We reverse engineer obfuscated JavaScript and
HTML code to mine evidence the enriches redirection chains
that the WCG follows before the first download event. Although
we capture the pre-download dynamics in order to capture
how redirection plays out, our observation suggests that, in
some cases, one can find redirection chains in WCGs after
downloads happen. In particular, while infectious WCGs
perform redirections before dropping an exploit payload, we
noticed instances of benign WCGs where redirections happen
even after downloading a payload (e.g., when clicking on
ad banners). For such cases, our pre-download redirection
inference method is modified such that we take the sum of all
redirections in a WCG.

Global properties. From the analytics on our ground truth
dataset, we found out that there are 10 nodes on average per
malware infection graph with a minimum of 2 nodes and a
maximum of 404 nodes. The range of edges is between 2 and
1778 edges, with an average of 46 edges. As for lifetime, the
graphs have an average lifetime of 123 seconds with a range
between 0.5 and 4061 seconds.

IV. PAYLOAD-AGNOSTIC FEATURES

The complete description of our features is shown in Table
II. We group the features in to high-level aggregates, graph-
centric properties, properties of HTTP headers, and temporal
dynamics. Features for which the last column of Table II has
a checkmark (X) are novel features that we introduce (use for
the first time) in this work. For features reused from prior work,
we show citations to those works. Notice also that the last
column shows an indirect comparison of our feature set against

closely related work ([9, 12, 16, 25]). While the descriptions
in Table II are self-explanatory, in the rest of this section we
provide more context on graph properties and HTTP header
features. Note that the reference dataset for all the distributions
we present in this section is the ground truth data in Table I.

IV-A. Graph Features (f7 - f25)

Our focus on graph dynamics is motivated by the downloader
graph analytics in [12] and redirection graph analysis in [25].
While [12] also uses diameter, density, and clustering coefficient
of downloader graphs, our WCG abstraction semantically
differs from [12] in three respects. Firstly, we use payload as
an edge attribute and the URL from which it is downloaded as
a node. Differently from our technique, [12] uses a downloaded
executable as a node and the source URL as an edge. Secondly,
[12, 16] and [25], analyze downloader graph and redirection
graph respectively. In DYNAMINER, we rather combine the
download graph with the redirection graph. In addition, we also
include post-download graph dynamics whenever available. In
fact, our study confirmed that 92% of the infection WCGs
contain at least 1 post-download edge. Thirdly, we compute
and show the effectiveness of new graph features compared
to the state of the art techniques [12, 16, 21, 25]. Given the
comprehensiveness of the graph abstraction we discussed in
Section V, we believe the graph features reflect a much accurate
dynamics of malware infections. The distributions of selected
graph features shown in Figures 7-9 confirm the discriminating
power of our graph features.

Fig. 7: Average node connectivity.

IV-B. Header Features (f26 - f35)

After a successful infection, malware often “calls back home”
to exfiltrate valuable information from the victim host or to get
more payloads for future missions. Alternatively, the malware
can also use the infected host as a bot to conduct further attacks
(e.g., spam campaigns). The key insight here is to leverage
the malware infection dataset to pinpoint WCG structures that
reveal a malware contacting a C&C server of the attacker. For

8

High-Level Features (HLFs) Brief Description Novel
f1: Origin whether origin is known or not. [25]
f2: X-Flash-Version whether X-Flash version is set or not. X
f3: WCG-Size size of a WCG. [12]
f4: Conversation-Length number of unique hosts involved in the WCG. X
f5: Avg-URIs-per-Host average URIs per host computed as:

∑
URIs

num hosts
. [9]

f6: Average-URI-Length average URI length computed as:
∑

len(URIs)
num URIs

. X
Graph Features (GFs)
f7: Order number of nodes in a WCG. [12, 25]
f8: Size number of edges of a WCG. [12]
f9: Degree number of edges the node shares with other nodes in the graph. X
f10: Density measure of how close the number of edges is to the maximum number of possible edges. [12]
f11: Volume sum of node degrees over all nodes in the graph. X
f12: Diameter longest distance between any pair of nodes. [12]
f13: Avg-In-Degree average number of incoming edges to a node in the graph. X
f14: Avg-Out-Degree average number of outgoing edges from a node in the graph. X
f15: Reciprocity likelihood of nodes to be mutually linked. X
f16: Avg-Degree-Centrality average of number of ties a node has. X
f17: Avg-Closeness-Centrality average of the reciprocal of the sum of a node’s distances from all other nodes. X
f18: Avg-Betweenness-Centrality average number of shortest paths from all nodes to all others that pass through that node. X
f19: Avg-Load-Centrality average of the fraction of all shortest paths that pass through a node. X
f20: Avg-Node-Centrality average of the smallest number of nodes whose removal disconnects the graph. X
f21: Avg-Clustering-Coefficient average of measure of the degree to which nodes in a graph tend to cluster together. [12]
f22: Avg-Neighbor-Degree average degree of neighbors of a node in the graph. X
f23: Avg-Degree-Connectivity average degree for connected nodes. X
f24: Avg-K-Nearest-Neighbors average number nodes at k-nodes distance from each node. X
f25: Avg-PageRank average value for the importance measure of a node in the graph. X
Header Features (HFs)
f26: GETs total number of GET methods in a WCG. X
f27: POSTs total number of GET methods in a WCG. X
f28: Other-Methods total number of less common methods (e.g., PUT, DELETE) in a WCG. X
f29: HTTP-10Xs total number of informational responses in a WCG. X
f30: HTTP-20Xs total number of success responses in a WCG. X
f31: HTTP-30Xs total number of redirection responses in a WCG. X
f32: HTTP-40Xs total number of client error responses in a WCG. X
f33: HTTP-50Xs total number of server error responses in a WCG. X
f34: Referrer-Ctrs total number of URIs which have referees set in a WCG. [16, 25]
f35: No-Referrer-Ctrs total number URIs for which referrer is empty in a WCG. [16, 25]
Temporal Features (TFs)
f36: Duration average duration to access a single URI in a WCG session in seconds. X
f37: Avg-Inter-Transact-Time average time (in seconds) between two consecutive web transactions. X

TABLE II: Feature types and brief explanations on how they are derived from WCGs.

instance, if we encounter POST requests leaving the victim after
the completion of malware payload download, such an event
is a strong evidence of post-download behavior. In this regard,
HTTP headers carry statistical insights into the post-infection
dynamics of a WCG. Our rationale for using such features from
the WCGs is that HTTP methods such as GET and POST, and
response codes are exhibit distinct distributions in benign and
infectious WCGs. Thus, studying these properties reinforces
the other graph properties in DYNAMINER.

V. CLASSIFIER TRAINING AND DETECTION

In this section, we provide an overview of learning a classifier
and the detection method in DYNAMINER.

V-A. Classifier Training

Given the features we described in Section IV, we use an
ensemble random forest (ERF) [1] to train our classifier. Our
choice of ERF is driven by the nature of our WCGs and the
underlying theory of the learning algorithm. The WCGs we

build are likely to have sub-classes within the whole WCG due
to distinct dynamics pertinent to redirection, download, and
post-download sub-structures. In fact, a tree-based classifier
such as a decision tree seems a natural choice for our WCG
classification problem. However, decision trees tend to overfit
training data that exhibits internal variability. Instead of taking
the majority vote in the standard ERF, our implementation of
the ERF combines classifiers by averaging their probabilistic
prediction (which reduces variance). An ERF is therefore less
prone to overfitting as compared to a decision tree.

V-B. On-the-Wire Detection

The intuition behind our on-the-wire detection is as follows.
DYNAMINER sits at the edge of a network or as a web proxy
to inspect individual web transactions from different hosts.

Infection clue inference. In the course of HTTP conversa-
tion, after each request-response transaction, the infection clue
inference module of DYNAMINER determines on the presence
of an infection clue. An infection clue, intuitively, is a likely
indicator of malware infection. For our purpose, for instance,

9

Fig. 8: Average betweenness centrality.

Fig. 9: Average closeness centrality.

an infection clue is flagged when a redirection chain of length
>= l is followed by a download of a file type t. The threshold
for l and the download likelihood of the payload type x to
be infectious are determined from a statistical analysis of the
ground truth data.

Potential Infection WCG construction. Using the infection
clue, DYNAMINER then goes back in time to construct a
potential infection WCG using the WCG construction scheme
we discussed earlier. To avoid mixup of HTTP transactions from
multiple remote hosts, the session ID [18] of the download
and the redirection chains that triggered the infection clue are
used to guide the grouping of HTTP transactions that are likely
to go into the same WCG. In case of multiple session IDs
that a client is identified with when it interacts with multiple
remote hosts, we use a heuristic that leverages referrer values
and timestamps to cluster transactions into groups of sessions.
Each cluster then becomes a WCG to watch as the various
hosts communicate with remotes hots on the Web. Note that

to reduce noise from benign HTTP traffic, we weed out HTTP
transactions that originate from known vendors. For instance,
assuming that these sources are trusted, we exclude traffic that
involve downloads from online application stores / software
repositories.

WCG classification and update. After the potential infec-
tion WCG is constructed, DYNAMINER extracts the features
and queries the classifier. If the classifier predicts that a WCG
is infectious, then DYNAMINER issues an alert. If the WCG
is found benign, DYNAMINER keeps watching the WCG.
In the course of watching WCGs, for each request-response
transaction in the HTTP stream, DYNAMINER updates the
respective WCG (again based on session IDs). Each update of
a WCG then triggers feature extraction and invoking of the
ERF classifier. DYNAMINER continues to watch each potential
infection WCG until either the WCG stops growing or the
session between the client and the remote host(s) is terminated.

VI. EVALUATION

We evaluate the effectiveness of DYNAMINER with regards
to the ground truth dataset, an independent validation dataset,
a forensic case study on recorded traffic, and a live case study
in a mini-enterprise setting.

VI-A. Features and Classifier Effectiveness

Features. Table IV shows the ranking of the top-20 features
in our ERF classifier on the ground truth dataset. For computing
the ranks, we use the gain ratio metric with 10-fold cross
validation. This metric is known for reducing bias towards
multi-valued features in its criteria for selecting features. In
favor of our claim about capturing comprehensive dynamics,
graph-centric features make it to 15 of the top-20 features
—showing how useful the graph dynamics is in distinguishing
benign and infection WCGs.

Classifier. We evaluated our ERF classifier (a) using 10-fold
cross validation on the training dataset in Table I and (b) using
a labeled independent test set (Table V). The training was ran
by varying the number of trees (Nt) and number of features
(Nf) to get the best balance between true positive and false
positive rates. The best performance our EDF classifier is with
Nt = 20 and Nf = log2(NumFeatures) + 1 over all the 37
features described on Table II. Figure 10 shows the ROC curve
of the ERF classifier we use to perform independent test on a
separate dataset (Section VI-B).

As can be seen from Table III, training the classifier using
the HLFs, HFs, and TFs from Table II (by excluding graph
features) achieves the lowest true positive rate (0.860) with the
highest false positive rate of 0.304. On the other hand, using
graph features alone, the true positive rate jumps to 0.978 and
the false positive rate drops to 0.059. Note that when all the
features are combined, the false positive rate clearly drops
(from 0.059 to 0.015) while improving the true positive rate
(from 0.958 to 0.973). This is consistent with our observation
that malicious WCGs have distinct distribution of features
as compared to benign WCGs (see Figures 7-9). Our manual
verification of the trees generated by the ERF shows that, when
combined with the other features, the graph features improve
the classifier accuracy.

10

Features TPR FPR F-score ROC Area
All 0.973 0.015 0.972 0.978
GFs 0.958 0.059 0.954 0.928
HLFs+HFs+TFs 0.806 0.304 0.848 0.860

TABLE III: Impact of features on classifier accuracy.

Feature Gain Ratio Average Rank
Avg-inter-trans-time 0.484 ± 0.015 1 ± 0
Duration 0.454 ± 0.021 2 ± 0
Order 0.309 ± 0.011 4.3 ± 1.27
Avg-load-centrality 0.309 ± 0.011 5.6 ± 2.15
Avg-closeness-centrality 0.309 ± 0.011 5.9 ± 1.92
Avg-betweenness-centrality 0.309 ± 0.011 6.2 ± 2.14
Avg-pagerank 0.309 ± 0.011 6.8 ± 1.4
Avg-neighbor-degree 0.306 ± 0.011 9.5 ± 1.8
Avg-k-nearest-neighbor 0.306 ± 0.011 9.6 ± 1.2
Avg-degreee-connectivity 0.306 ± 0.011 10.7 ± 1.55
Avg-in-degree 0.29 ± 0.02 11.4 ± 2.87
Avg-out-degree 0.29 ± 0.02 11.6 ± 2.8
Convs-length 0.302 ± 0.01 12 ± 1.9
Reciprocated-edges 0.248 ± 0.051 14.4 ± 6.55
Graph-size 0.245 ± 0.026 16.1 ± 0.94
HTTP-20X 0.251 ± 0.044 16.1 ± 2.77
HTTP- GETs 0.225 ± 0.047 16.8 ± 3.22
Avg-clustering-coeff 0.255 ± 0.008 17 ± 1.18
Volume 0.245 ± 0.026 17.1 ± 0.94
Degree 0.209 ± 0.053 18 ± 5.02

TABLE IV: Feature rankings for the top-20 features.

Fig. 10: ROC curve for ERF classifier on all features.

VI-B. Detection on a Separate Validation Set

To get insights about how our classifier would perform
on samples it has never seen, on a dataset disjoint with the
ground truth, we perform an experiment on a test set of 7489
malicious and 1500 benign WCGs. Note that the benign traces
are collected the same way we collected the benign ground
truth (as described in Section II). The infection samples are
drawn from pre-verified ThreatGlass [3] malware infection
intelligence. We submit the same test set to VirusTotal and
compare the accuracy with the results of our classifier.

Overall effectiveness. As shown in Table V, DYNAMINER
outperforms the current state of practice malware detectors by
a visible margin (11.5% to be precise). Given the unique angle

we explored to tackle malware infection, the results confirm
that our payload-agnostic, graph-centric, and comprehensive
analytics of infection dynamics is practically effective. Being
a learning-based system, DYNAMINER faces challenges in
terms of false signals. In the following, we analyze the reasons
behind misclassifications we encountered in our tests.

Analysis of false positives. False positives are benign WCGs
flagged as infection by our ERF classifier. As we indicated
in Section II, legitimate download sources are excluded from
our WCG construction. However, users often download benign
content from unofficial sources. By cross-checking the hash
values of downloaded payloads, we confirmed that 37 of the 49
false positives in DYNAMINER have download dynamics that
connects to unofficial sites that deliver benign content. Since
DYNAMINER does payload-agnostic analysis, based primarily
on graph-centric properties, it flagged those WCGs as infections.
In the remaining 12 cases of false positives, we noticed the
client downloaded large binaries (in the range 246MB - 1.1GB)
and a long list of videos downloaded from torrent sites. In
addition to the size of downloads, the overall duration is also
exceptionally long —which resulted in flagging the benign
WCGs as infectious.

Analysis of false negatives. False negatives are infection
WCGs flagged as benign by our ERF classifier. Through
manual analysis of the 206 infection WCGs that DYNAMINER
flagged as benign, we identified two major causes. Firstly, we
noticed the absence of redirections but delivery of compressed
malicious payload. In particular, we confirmed 89 cases of no
redirections but compressed payload download. The second
source of false negatives is the absence of post-download graph
dynamics. This is not totally surprising since we have already
confirmed that about 8% of our ground truth dataset does not
contain post-download dynamics. Note that we could have
avoided such misclassifications by excluding infection WCGs
that have no post-download dynamics. We decided to keep
them in the training set because of the rich dynamics they have
on top of the pre-download and download stages.

VI-C. Case Study 1: Forensic Detection

Potentially infectious web session. To evaluate DY-
NAMINER on a web session that is potentially infectious, we
selected a free live streaming service due the high likelihood
of malware infections according to a recent large-scale study
[20] on free streaming sites. Our case study was conducted
on a PCAP capture of a user who watched the final game of
EURO2016 Soccer Tournament on July 10 2016 on a free live
streaming site (http://atdhe.net). On the browser, there
were 18 distinct tabs open during the streaming session. The
user occasionally switched to one of the tabs and clicked on
links. In the course of the 90 minutes streaming, the service
was interrupted 3 times and every time the page was reloaded,
there was a JavaScript pop-up that asked the user to click
on a download link that claims to fix a “out-of-date player”.
The user intentionally clicked on the links all of which led
to other sites which appear to serve executables. The whole
session resulted in the download of 32 payloads and the longest
redirection chain was 4. The user’s host conversed with 12
unique remote domain names during the whole session.

Detection and comparison with VirusTotal. We deployed
DYNAMINER on a host and replayed the traffic using a local

11

System # of WCGs Tested Correctly Classified False Positives False Negatives
DYNAMINER benign: 1500, infection:7489 benign =1471 (98.1%), infection=7283 (97.38%) 29 206

VirusTotal benign: 1500, infection:7489 benign=1409 (94.0%), infection =6310 (84.3%) 91 1179∗

TABLE V: Classifier performance on independent test data. ∗ For 110 of the 1179 infection WCGs, VirusTotal timed-out.

web server. In the course of the replay, DYNAMINER issued
5 infection alerts on a total of 3, 011 HTTP transactions (i.e.,
request-response pairs) in the stream. The redirection threshold
used for this evaluation was 3. Of the 5 alerts, 3 involved an
Adobe Flash player executable download, while the remaining 2
were a JAR file and a PDF. We submitted all the 32 downloaded
files to VirusTotal and at least 3 of the detectors in VirusTotal
flagged as malicious 4 of the 5 payloads that DYNAMINER
alerted as malicious. On the PDF payload, all the 56 VirusTotal
detectors flagged it as clean. As a follow-up, after 11 days, we
resubmitted to VirusTotal the same PDF that was flagged clean.
Interestingly, 3 detectors flagged it as malicious for the first
time. This shows that DYNAMINER can flag a malware that
took VirusTotal detectors 11 days to pick up. Note that prior
work [12] has also confirmed similar experience of VirusTotal
detectors lagging an average of 9.25 days in flagging malware.

VI-D. Case Study 2: On-the-Wire Detection

Mini-enterprise setup. In this setup, DYNAMINER is
deployed as a web proxy in a 3-host mini-enterprise network.
The three hosts are a MacOS host with Google Chrome, a
Ubuntu host with Firefox, and a Windows host with Internet
Explorer. DYNAMINER intercepts all HTTP transactions from
the three hosts and performs live analysis. This setup was run
for 48 hours while the users were performing their routine
web browsing. The Windows host is setup with COTS AV
engine while the other two did not have one. The three hosts
downloaded 62 files during the course of the case study and the
average redirection length is 2 with the maximum redirection
chain of 6.

Live alerts. Table VI summarizes the live case study in
terms of the various payload types downloaded on each host,
the maximum and average redirection chain length, and the
breakdown of alerts issued by DYNAMINER. As shown in the
last row, DYNAMINER issued 8 alerts (4 on the Windows host,
3 on the Linux Host, and 1 on the MacOS host). 3 of the 4
alerts on the Windows host are issued right after a download
of an Adobe Flash payload while 1 is after JAR payload was
downloaded. Note that the AV on the windows host, which
was enabled during the case study, did not issue any alert on
when these payloads were downloaded. On the Ubuntu host,
all the 3 alerts are related to a download of JAR payloads,
while the one on the MacOS host is a “.dmg” executable. We
submitted all the 62 files to VirusTotal and it flagged (malicious)
all the 8 that are relevant to the alerts by DYNAMINER. In
addition, VirusTotal flagged as malicious 2 PDF files that were
downloaded on the Windows host, but DYNAMINER issued
no alert pertinent to the download of these PDF files.

False signal investigation. As a payload-agnostic system, if
the maliciousness of an exploit payload manifests on its content
or its behavior, DYNAMINER will likely flag it as benign. To
understand why DYNAMINER could not issue alerts around the
download of the 2 PDF files, we conducted a tool-supported
investigation. In particular, we analyzed the PDF files with

PDF Stream Dumper [2], which revealed Flash files embedded
in the PDFs. We believe that VirusTotal deemed these files
based on analysis results of its signature- and/or content-based
malware detectors (3/56 malicious detections are all from AV
engines for both PDF files).

Total Windows Host Ubuntu Host MacOS Host
PDF 11 15 6
Executable 6 0 8
Flash 0 0 0
Silverlight 0 0 0
JAR 5 8 3
Avg. Redirection Chain 2 2 2
Max. Redirection Chain 6 4 3
DYNAMINER Alert 4 3 1

TABLE VI: Live detection summary on 48 hours of HTTP
traffic streaming.

VII. DISCUSSION AND LIMITATIONS

We demonstrated how we can tap into the rich dynamics of
a web conversation to learn distinguishing insights for payload-
agnostic malware detection. DYNAMINER is driven by an
assumption that the web conversation exhibits a certain degree
of dynamism centered around download, redirections, and post-
download dynamics. We also note that our system operates on
unencrypted HTTP conversation. In what follows, we highlight
evasion attempts that a determined adversary may employ to
circumvent our ERF classifier.

Cloaked download dynamics. Although there is a trend
in shifting to in-memory infections by exploit kits (e.g.,
Angler) [22], the infection trend we studied shows that file-
based infections are by far the most predominant and consistent
for the last 3 years. In fact, we found out that all the infection
sessions we analyzed for training our classifier involved a
download of an exploit payload for accomplishing an attack.
We note that even if a WCG misses download dynamics, but
has redirections and post-infection call-back, we believe it
will still be classified as infectious due to the prediction score
averaging by the ERF classifier which reduces the variance.

Cloaked redirection dynamics. Sometimes, infections may
skip redirections to directly lead a victim to an exploit server.
Although we have very few instances (11 in our dataset)
of WCGs without redirects, it is a trade-off that attackers
consider to complicate detection efforts. In theory though,
an attacker may attempt to evade DYNAMINER by avoiding
redirections and directly infecting the victim via drive-by or
fileless infection. If she chooses fileless infection, DYNAMINER
may not be able to detect as the resulting WCG will miss the
most revealing features.

Post-download tweaks. Contrary to the common case of
post-download dynamics we observed in our dataset, a malware
author may cloak post-download by either (a) doing nothing
after a successful infection or (b) delaying the call to the C&C
server. For the former, it significantly limits the effectiveness of
the attack in exfiltrating valuable information from the victim

12

host. Hence, if at all it happens, it is rather in favor of the
defender. In the latter case, DYNAMINER may miss the post-
download dynamics as it is not trivial to learn the timing pattern
of what plays out after infection.

VIII. RELATED WORK

We discuss related work focusing on graph-based malware
detection and exploit kit analysis and detection.

Graph and tree-based infection abstraction. Kwon et
al. [12] capture download activity on end hosts and explore
the growth patterns of benign and malicious graphs to build
a classifier. SpiderWeb [25] leverages redirections browsers
go through to detect malicious web pages. BotHunter [8]
synthesizes evidence of malware infection by tracking dialogue
between internal host and external entities of a network.
WebWittness [16] studies the origin of malware by tracing
back the web paths followed by users who fall victim to
malware downloads. In a follow-up work to WebWitness,
Nelms et al. [17] present a systematic study on characterization
and detection of social engineering attacks that lure users
to download malware. In a malware distribution context,
Nazca [9] identifies infectious downloads and installations in
large scale networks. BotGrep [15] localizes botnet members
based on the unique communication patterns arising from their
overlay topologies used for command-and-control. Mekky et
al. [14] developed a decision tree classifier based on HTTP
redirection trees of browsing traces. CAMP [21] is an in-
browser system for content-agnostic malware protection based
on binary reputation. Amico [28] detects malicious downloads
based on provenance of downloaded files in a windows host.
DYNAMINER differs from this body of work in its richer
abstraction and comprehensive analytics of WCGs.

Exploit kit malware analysis and detection. In [26], Taylor
et al. detect exploit kit malware through tree similarity of HTTP
flows. In a follow-up work [27], they leverage honeyclient-
based detection of exploit kits on a network. Compared
to [26, 27], our methodology in DYNAMINER differs in
the payload-agnostic graph abstraction of infection dynamics.
WebWinnow [7] leverages honey-clients to capture exploit kit
behaviors for malicious URL detection. Kizzle [24] employs
hierarchical clustering of unpacked malicious JavaScript code
to generate exploit kit signatures. DYNAMINER complements
these works by abstracting WCGS in a comprehensive manner.

IX. CONCLUSION

This paper presented DYNAMINER, a payload-agnostic
system that performs web conversation graph analytics to
uncover malware infection insights. By enriching the malware
download phenomenon with pre-infection and post-infection
dynamics, we demonstrate the effectiveness of graph features
to distinguish malware infections in an evasion-resilient fashion.
We evaluated DYNAMINER on multiple test sets of infection-
free and infection WCGs and it achieved a TP rate of 97.3%
with a FP rate of 1.5%. We also demonstrated the forensic
and live detection capabilities of DYNAMINER with two case
studies that demonstrate the effectiveness of our approach in
detecting unknown malware days before VirusTotal detectors.

X. ACKNOWLEDGEMENTS

This material was supported in part by National Science
Foundation grant CNS-1514472 and by a Defense Advanced
Research Projects Agency / Air Force Research Lab contract
FA8650-15-C-7561. Any opinions, findings, and conclusion or
recommendations expressed in this material are those of the
authors and do not necessarily reflect the view of the NSF,
DARPA, AFRL, or the US government.

REFERENCES
[1] Ensemble random forest classifier. http://scikit-learn.org/stable/modules/generated/

sklearn.ensemble.RandomForestClassifier/.
[2] Pdf stream dumper. https://github.com/dzzie/pdfstreamdumper/.
[3] Threatglass. http://www.threatglass.com/pages/.
[4] Virustotal. https://www.virustotal.com/.
[5] Marco Cova, Christopher Kruegel, and Giovanni Vigna. Detection and analysis of

drive-by-download attacks and malicious javascript code. In WWW, 2010.
[6] Brad Duncan. How the EITest Campaign’s Path to Angler EK Evolved Over Time.

http://researchcenter.paloaltonetworks.com/tag/angler-exploit-kit/, 03 2016.
[7] Birhanu Eshete and V. N. Venkatakrishnan. Webwinnow: Leveraging exploit kit

workflows to detect malicious urls. In ACM CODASPY, pages 305–312, 2014.
[8] Guofei Gu, Phillip Porras, Vinod Yegneswaran, Martin Fong, and Wenke Lee.

BotHunter: Detecting Malware Infection Through IDS-driven Dialog Correlation.
In USENIX SEC, 2007.

[9] Luca Invernizzi, Stanislav Miskovic, Ruben Torres, Christopher Kruegel,
Sabyasachi Saha, Giovanni Vigna, Sung-Ju Lee, and Marco Mellia. Nazca:
Detecting Malware Distribution in Large-Scale Networks. In ISOC NDSS, 2014.

[10] Jaymesned. List of ransomware extensions and known ransom files created
by Crypto malware. https://www.reddit.com/r/sysadmin/comments/46361k/list of
ransomware extensions and known ransom/, 03 2016.

[11] Alexandros Kapravelos, Yan Shoshitaishvili, Marco Cova, Christopher Kruegel, and
Giovanni Vigna. Revolver: An automated approach to the detection of evasive web-
based malware. In USENIX SEC, 2013.

[12] Bum Jun Kwon, Jayanta Mondal, Jiyong Jang, Leyla Bilge, and Tudor Dumitras.
The Dropper Effect: Insights into Malware Distribution with Downloader Graph
Analytics. In ACM CCS, 2015.

[13] Long Lu, Vinod Yegneswaran, Phillip Porras, and Wenke Lee. Blade: An attack-
agnostic approach for preventing drive-by malware infections. In ACM CSS, 2010.

[14] Hesham Mekky, Ruben Torres, Zhi-Li Zhang, Sabyasachi Saha, and Antonio Nucci.
Detecting malicious HTTP Redirections Using Trees of User Browsing Activity.
In IEEE INFOCOM, 2014.

[15] Shishir Nagaraja, Prateek Mittal, Chi-Yao Hong, Matthew Caesar, and Nikita
Borisov. BotGrep: Finding P2P Bots with Structured Graph Analysis. In USENIX
SEC, 2010.

[16] Terry Nelms, Roberto Perdisci, Manos Antonakakis, and Mustaque Ahamad.
WebWitness: Investigating, Categorizing, and Mitigating Malware Download Paths.
In USENIX SEC, 2015.

[17] Terry Nelms, Roberto Perdisci, Manos Antonakakis, and Mustaque Ahamad.
Towards Measuring and Mitigating Social Engineering Software Download Attacks.
In USENIX SEC, 2016.

[18] Phillip M. Hallam-Baker and Dan Connolly. Session identification uri. https:
//www.w3.org/TR/WD-session-id/.

[19] Niels Provos, Panayiotis Mavrommatis, Moheeb Abu Rajab, and Fabian Monrose.
All your iframes point to us. In USENIX SEC, 2008.

[20] M. Zubair Rafique, Tom van Goethem, Wouter Joosen, Christophe Huygens, and
Nick Nikiforakis. It’s free for a reason: Exploring the ecosystem of free live
streaming services. In ISOC NDSS, 2016.

[21] Moheeb Abu Rajab, Lucas Ballard, Noe Lutz, Panayiotis Mavrommatis, and Niels
Provos. CAMP: Content-Agnostic Malware Protection. In ISOC NDSS, 2013.

[22] Jerome Segura. Fileless infections from exploit kit: An
overview. https://blog.malwarebytes.org/exploits-2/2014/09/
fileless-infections-from-exploit-kit-an-overview/, 09 2014.

[23] Jerome Segura. Exploit Kits: A Fast Growing Threat. https://blog.malwarebytes.
org/101/2015/01/exploit-kits-a-fast-growing-threat/, 01 2016.

[24] Ben Stock, Benjamin Livshits, and Benjamin Zorn. Kizzle: A Signature Compiler
for Exploit Kits. Technical report, Microsoft Research, 02 2015.

[25] Gianluca Stringhini, Christopher Kruegel, and Giovanni Vigna. Shady paths:
Leveraging Surfing Crowds to Detect Malicious Web Pages. In ACM CCS, 2013.

[26] Teryl Taylor, Xin Hu, Ting Wang, Jiyong Jang, Marc Ph Stoecklin, Fabian Monrose,
and Reiner Sailer. Detecting Malicious Exploit Kits Using Tree-based Similarity
Searches. In ACM CODASPY, 2016.

[27] Teryl Taylor, Kevin Z. Snow, Nathan Otterness, and Fabian Monrose. Cache,
Trigger, Impersonate: Enabling Context-Sensitive Honeyclient Analysis On-the-
Wire. In ISOC NDSS, 2016.

[28] Phani Vadrevu, Babak Rahbarinia, Roberto Perdisci, Kang Li, and Manos Anton-
akakis. Measuring and detecting malware downloads in live network traffic. In
ESORICS, 2013.

